Spring for Apache Hadoop 1.0发布

–>

SpringSource发布了Spring for Apache Hadoop 1.0。 开发者能够通过它编写基于Spring Framework的Hadoop应用,还能很容易地与Spring Batch和Spring Integration集成。Spring for Apache Hadoop是Spring Data大型项目的一个子项目,它基于开源的Apache 2.0许可发布。

Hadoop应用通常是一个命令行工具、脚本和代码的集合。Spring for Apache Hadoop为Hadoop应用开发提供了一个一致性的编程模型和声明式配置模型。开发人员现在能够借助它使用Spring编程模型(依赖注入、POJO 和辅助模板)实现Hadoop应用,并且能够以标准的Java应用而不是命令行工具的方式运行它。Spring for Apache Hadoop支持对HDFS的读写操作,支持运行MapReduce、流或者级联工作,还能够与HBase、Hive和Pig交互。

Spring for Apache Hadoop包含以下关键特性:

  • 支持声明式配置,能够创建、配置和参数化Hadoop连接,支持MapReduce、流、Hive、Pig和级联工作。有不同的 “runner”类执行不同的Hadoop交互类型,它们分别是JobRunner、ToolRunner、 JarRunner、 HiveRunner、 PigRunner、CascadeRunner和HdfsScriptRunner。
  • 全面的HDFS数据访问支持,可以使用所有基于JVM的脚本语言,例如Groovy、JRuby、Jython和Rhino。
  • 支持 Pig和Hive的模板类PigTemplate和HiveTemplate。这些辅助类提供了异常转化、资源管理和轻量级对象映射功能。
  • 支持对HBase的声明式配置,同时为Dao层支持引入了HBaseTemplate。
  • 声明和编程支持Hadoop工具,包括文件系统Shell(FsShell)和分布式复制(DistCp)。
  • 安全支持。Spring for Apache Hadoop清楚运行Hadoop环境的安全约束,因此能够透明地从一个本地开发环境迁移到一个完全Kerberos安全的Hadoop集群。
  • 支持Spring Batch。通过Spring Batch,多个步骤能够被调整为有状态的方式并使用REST API进行管理。例如,Spring Batch处理大文件的能力就可以被用于向HDFS导入或者从HDFS导出文件。
  • 支持Spring Integration。Spring Integration允许对那些在被读取并写入HDFS及其他存储之前能够被转换或者过滤的事件流进行处理。

下面是配置示例和代码片段,大部分来自于Spring for Hadoop博客或者参考手册。

MapReduce

<!-- use the default configuration -->
<hdp:configuration />
<!-- create the job -->
<hdp:job  
    input-path="/input/" output-path="/ouput/"
    mapper="org.apache.hadoop.examples.WordCount.TokenizerMapper"
    reducer="org.apache.hadoop.examples.WordCount.IntSumReducer" />
<!-- run the job -->
<hdp:job-runner  />

HDFS

<!-- copy a file using Rhino -->
<hdp:script >
    importPackage(java.util)

    name = UUID.randomUUID().toString()
    scriptName = "src/main/resources/hadoop.properties"
    // fs - FileSystem instance based on 'hadoopConfiguration' bean
    fs.copyFromLocalFile(scriptName, name)
</hdp:script>

HBase

<!-- use default HBase configuration -->
<hdp:hbase-configuration />

<!-- wire hbase configuration -->
<bean  />
// read each row from HBaseTable (Java)
List rows = template.find("HBaseTable", "HBaseColumn", new RowMapper() {
    @Override
    public String mapRow(Result result, int rowNum) throws Exception {
        return result.toString();
    }
}));

Hive

<!-- configure data source -->
<bean  />
<bean  />

<!-- configure standard JdbcTemplate declaration -->
<bean />

Pig

<!-- run an external pig script -->
<hdp:pig-runner >
    <hdp:script location="pig-scripts/script.pig"/>
</hdp:pig-runner>

 

如果想要开始,可以下载Spring for Apache Hadoop或者使用org.springframework.data:spring-data-hadoop:1.0.0.RELEASE  Maven构件。还可以获取Spring for Hadoop的WordCount示例。在YouTube上还有介绍Spring Hadoop的网络会议。

Spring for Apache Hadoop需要JDK 6.0及以上版本、Spring Framework 3.0及以上版本(推荐使用3.2)和Apache Hadoop 0.20.2 (推荐1.0.4)。现在并不支持Hadoop YARN、NextGen或 2.x。支持所有的Apache Hadoop 1.0.x分布式组件,这些分布式组件包括vanilla Apache Hadoop、Cloudera CDH3、CDH4和Greenplum HD等。

想要获取更深入的信息,你可以阅读Spring for Apache Hadoop 参考手册 和 Javadoc。Spring for Apache Hadoop 的源代码和示例托管在GitHub上。

原文链接:https://www.cnblogs.com/shihao/archive/2013/03/30/2991086.html
本文来源 互联网收集,文章内容系作者个人观点,不代表 本站 对观点赞同或支持。如需转载,请注明文章来源,如您发现有涉嫌抄袭侵权的内容,请联系本站核实处理。

© 版权声明

相关文章